M.Sc. DEGREE EXAMINATION - STATISTICS

THIRD SEMESTER - NOVEMBER 2009
ST 3812 / 3809 - STOCHASTIC PROCESSES

Date \& Time: 05/11/2009 / 9:00-12:00 Dept. No. \square Max. : 100 Marks

PART-A

Answer all the questions:
$10 \times 2=20$

1) Define a process with stationary and independent increments.
2) Define a Markov chain. Let $X_{1}, X_{2} \ldots \ldots$ be a sequence of independent random variables. Does the process $\left\{X_{n}\right\}$ form a Markov chain?
3) Suppose that customers arrive at a bank according to Poisson process with 3 per minute. What is the probability of getting 4 customers in 2 minutes?
4) What is the distribution of time between 2 successive arrivals in a Poisson process with parameters λ ? What is the distribution of the waiting time for k arrivals?
5) Define a renewal process.
6) Define a Super Martingale $\left\{X_{n}\right\}$ with respect to $\left\{Y_{n}\right\}$
7) Obtain $E\left[X_{1}+X_{2}+\ldots \ldots \ldots+X_{N}\right]$ when N is a random variable independent of X_{i}.
8) State Renewal theorem.
9) Explain linear growth with immigration.
10) Show that communication of states satisfies transitive relation.

PART-B

Answer any 5 questions:

$$
5 \times 8=40
$$

11) Define the transition probability matrix and show that the transition probability matrix with the initial distribution completely determines the chain.
12) Let $S_{n}=X_{1}+X_{2}+\ldots \ldots \ldots+X_{n}$ where $X_{1}, X_{2} \ldots \ldots$ are independent random variables. Let $S_{0}=0 . \operatorname{Pr}\left\{X_{i}=k\right\}=a_{k}, a_{k} \geq 0 \sum a_{k}=1$. Show that $\left\{S_{n}\right\}$ forms a Markov chain. Obtain the transition probability matrix.
13) Let the life time density of a renewal process be $f(x)=x e^{-x}, x>0$. Obtain $M(t)$.
14) Obtain the expression for $P_{n}(t)$ in Yule process when $X(0)=1$.
15) Define i) recurrent state
ii) period of a state

Show that recurrence is a class property.
16) Obtain the Kolmogorov-backward differential equations for a birth and death process.
17) Let $\mathrm{P}=\left[\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right], 0<\mathrm{a}, \mathrm{b}<1$

Prove $\mathrm{P}^{\mathrm{n}}=\frac{1}{(a+b)}\left\{\mathrm{A}+(1-\mathrm{a}-\mathrm{b})^{\mathrm{n}} \mathrm{B}\right\}$,
where $\mathrm{A}=\left[\begin{array}{ll}b & a \\ b & a\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{cc}a & -a \\ -b & b\end{array}\right]$
18) Let $\{X(t)\}$ be a Poisson process with parameter λ. Suppose each arrival is registered with probability p independent of other arrivals. Let $\{\mathrm{Y}(\mathrm{t})\}$ be the process of registered arrivals. Show that $\mathrm{Y}(\mathrm{t})$ is also Poisson.

PART-C
Answer any 2 questions
19) a) Show that in a positive recurrent apeoridic class
$\lim _{\mathrm{n} \rightarrow \infty} \mathrm{P}_{\mathrm{jj}}{ }^{\mathrm{n}}=\pi_{\mathrm{j}}=\sum \pi_{\mathrm{i}} \mathrm{P}_{\mathrm{ij}}, \sum \pi_{\mathrm{i}}=1$ and the $\pi^{\prime} \mathrm{s}$ are uniquely determined.
b) Given the following one - step tpm, obtain the stationary distribution for the Markov chain after verifying the conditions required for a unique solution.
$\mathrm{P}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{8} & \frac{1}{8} & \frac{1}{2}\end{array}\right]$
20) a) State the postulates of a Poisson process.
b) Derive an expression for $\mathrm{P}_{\mathrm{n}}(\mathrm{t})$ in a Poisson process.
c) Let $X_{1}(t)$ and $X_{2}(t)$ be two independent Poisson processes with parameters λ_{1} and λ_{2} respectively. Obtain the pdf of $X_{1}(t)$ given $\mathrm{X}_{1}(\mathrm{t})+\mathrm{X}_{2}(\mathrm{t})=\mathrm{n}$

$$
(5+10+5)
$$

21) a) Obtain the expression for $E\left[S_{N(t)+1}\right]$ in a renewal process.
b) Find $P[N(t) \geq k]$ in a renewal process having lifetime density

$$
\mathrm{f}(\mathrm{x})=\rho \mathrm{e}^{-\rho(\mathrm{x}-\delta)} \text { for } \mathrm{x}>\delta
$$

c) A continuous time Markov chain has two states labeled 0 and 1.The waiting time in state 0 is exponential with parameter λ. The waiting timein state 1is exponential with parameter μ. Obtain the expression for $\mathrm{P}_{00}(\mathrm{t})$.
22) a) Obtain the mean and the variance of branching process.
b) Show that for a branching process $X_{n}=m^{-n} Y_{n}$ is a martingale.
c) Let the distribution of number of offsprings be geometric with $\mathrm{P}_{\mathrm{k}}=\mathrm{b}(1-\mathrm{b})^{\mathrm{k}}, \mathrm{k}=0,1,2, \ldots ., 0<\mathrm{b}<1$
Obtain the probability of extinction.
$(10+5+5)$

